MIPO

MANABE INTELLECTUAL PROPERTY OFFICE

突然ですが、方程式の解の公式覚えてますか?

中学校で二次方程式の解の公式は習うようですが、これは平方完成(省略)を導けば求められます。

二次方程式

{\displaystyle ax^{2}+bx+c=0\quad (a\neq 0)}

の解は

{\displaystyle x={\frac {-b\pm {\sqrt {b^{2}-4ac}}}{2a}}}

ところで、3次方程式の解の公式はあまり教えてくれていません。

これは、カルダノの公式というようで、途中で立方完成を導いて求めるということです。

3次方程式

{\displaystyle a_{3}x^{3}+a_{2}x^{2}+a_{1}x+a_{0}=0\quad (a_{3}\neq 0)}

の解の公式は以下の通りであるとWikipediaにあります。

{\displaystyle {\begin{aligned}x_{1}=&\color {Red}{-{\frac {a_{2}}{3a_{3}}}}\\&+{\frac {\color {Blue}{\sqrt[{3}]{-2{a_{2}}^{3}+9a_{1}a_{3}a_{2}-27a_{0}{a_{3}}^{2}+{\sqrt {4\left(3a_{1}a_{3}-{a_{2}}^{2}\right)^{3}+\left(-2{a_{2}}^{3}+9a_{1}a_{3}a_{2}-27a_{0}{a_{3}}^{2}\right)^{2}}}}}}{3\color {RedOrange}{{\sqrt[{3}]{2}}a_{3}}}}\\&-{\frac {{\sqrt[{3}]{2}}\color {Green}{\left(3a_{1}a_{3}-{a_{2}}^{2}\right)}}{3a_{3}\color {Blue}{\sqrt[{3}]{-2{a_{2}}^{3}+9a_{1}a_{3}a_{2}-27a_{0}{a_{3}}^{2}+{\sqrt {4\left(3a_{1}a_{3}-{a_{2}}^{2}\right)^{3}+\left(-2{a_{2}}^{3}+9a_{1}a_{3}a_{2}-27a_{0}{a_{3}}^{2}\right)^{2}}}}}}}\\\\x_{2}=&\color {Red}{-{\frac {a_{2}}{3a_{3}}}}\\&-{\frac {\color {RedViolet}{\left(1-i{\sqrt {3}}\right)}{\color {Blue}{\sqrt[{3}]{-2{a_{2}}^{3}+9a_{1}a_{3}a_{2}-27a_{0}{a_{3}}^{2}+{\sqrt {4\left(3a_{1}a_{3}-{a_{2}}^{2}\right)^{3}+\left(-2{a_{2}}^{3}+9a_{1}a_{3}a_{2}-27a_{0}{a_{3}}^{2}\right)^{2}}}}}}}{6\color {RedOrange}{{\sqrt[{3}]{2}}a_{3}}}}\\&+{\frac {\color {MidnightBlue}{\left(1+i{\sqrt {3}}\right)}{\color {Green}{\left(3a_{1}a_{3}-{a_{2}}^{2}\right)}}}{3\times 2^{\tfrac {2}{3}}a_{3}\color {Blue}{\sqrt[{3}]{-2{a_{2}}^{3}+9a_{1}a_{3}a_{2}-27a_{0}{a_{3}}^{2}+{\sqrt {4\left(3a_{1}a_{3}-{a_{2}}^{2}\right)^{3}+\left(-2{a_{2}}^{3}+9a_{1}a_{3}a_{2}-27a_{0}{a_{3}}^{2}\right)^{2}}}}}}}\\\\x_{3}=&\color {Red}{-{\frac {a_{2}}{3a_{3}}}}\\&-{\frac {\color {MidnightBlue}{\left(1+i{\sqrt {3}}\right)}{\color {Blue}{\sqrt[{3}]{-2{a_{2}}^{3}+9a_{1}a_{3}a_{2}-27a_{0}{a_{3}}^{2}+{\sqrt {4\left(3a_{1}a_{3}-{a_{2}}^{2}\right)^{3}+\left(-2{a_{2}}^{3}+9a_{1}a_{3}a_{2}-27a_{0}{a_{3}}^{2}\right)^{2}}}}}}}{6\color {RedOrange}{{\sqrt[{3}]{2}}a_{3}}}}\\&+{\frac {\color {RedViolet}{\left(1-i{\sqrt {3}}\right)}\color {Green}{\left(3a_{1}a_{3}-{a_{2}}^{2}\right)}}{3\times 2^{\tfrac {2}{3}}a_{3}\color {Blue}{\sqrt[{3}]{-2{a_{2}}^{3}+9a_{1}a_{3}a_{2}-27a_{0}{a_{3}}^{2}+{\sqrt {4\left(3a_{1}a_{3}-{a_{2}}^{2}\right)^{3}+\left(-2{a_{2}}^{3}+9a_{1}a_{3}a_{2}-27a_{0}{a_{3}}^{2}\right)^{2}}}}}}}\end{aligned}}}

あるいは、

{\displaystyle {\begin{aligned}&a_{3}x^{3}+a_{2}x^{2}+a_{1}x=0\quad (a_{3}\neq 0)\\\\&x_{1}=\color {Red}{-{\frac {a_{2}}{3a_{3}}}}+{\frac {\color {Blue}{\sqrt[{3}]{\begin{array}{|c|}\hline 2\\\hline \end{array}}}}{3\color {RedOrange}{{\sqrt[{3}]{2}}a_{3}}}}-{\frac {{\sqrt[{3}]{2}}\color {Green}{\begin{array}{|c|}\hline 4\\\hline \end{array}}}{3\color {Blue}{\sqrt[{3}]{\begin{array}{|c|}\hline 2\\\hline \end{array}}}a_{3}}}\\&x_{2}=\color {Red}{-{\frac {a_{2}}{3a_{3}}}}-{\frac {\color {RedViolet}{\left(1-i{\sqrt {3}}\right)}{\color {Blue}{\sqrt[{3}]{\begin{array}{|c|}\hline 2\\\hline \end{array}}}}}{6\color {RedOrange}{{\sqrt[{3}]{2}}a_{3}}}}+{\frac {\color {MidnightBlue}{\left(1+i{\sqrt {3}}\right)}{\color {Green}{\begin{array}{|c|}\hline 4\\\hline \end{array}}}}{3\times 2^{\tfrac {2}{3}}\color {Blue}{\sqrt[{3}]{\begin{array}{|c|}\hline 2\\\hline \end{array}}}a_{3}}}\\&x_{3}=\color {Red}{-{\frac {a_{2}}{3a_{3}}}}-{\frac {\color {MidnightBlue}{\left(1+i{\sqrt {3}}\right)}{\color {Blue}{\sqrt[{3}]{\begin{array}{|c|}\hline 2\\\hline \end{array}}}}}{6\color {RedOrange}{{\sqrt[{3}]{2}}a_{3}}}}+{\frac {\color {RedViolet}{\left(1-i{\sqrt {3}}\right)}{\color {Green}{\begin{array}{|c|}\hline 4\\\hline \end{array}}}}{3\times 2^{\tfrac {2}{3}}\color {Blue}{\sqrt[{3}]{\begin{array}{|c|}\hline 2\\\hline \end{array}}}a_{3}}}\\\\&{\begin{array}{|l|}\hline {\begin{array}{|c|}\hline 1\\\hline \end{array}}\rightarrow -2{a_{2}}^{3}+9a_{1}a_{2}a_{3}-27a_{0}{a_{3}}^{2}\\\hline {\begin{array}{|c|}\hline 2\\\hline \end{array}}\rightarrow {\begin{array}{|c|}\hline 1\\\hline \end{array}}+{\sqrt {\begin{array}{|c|}\hline 3\\\hline \end{array}}}\\\hline {\begin{array}{|c|}\hline 3\\\hline \end{array}}\rightarrow {\begin{array}{|c|}\hline 1\\\hline \end{array}}^{2}+4{\begin{array}{|c|}\hline 4\\\hline \end{array}}^{3}\\\hline {\begin{array}{|c|}\hline 4\\\hline \end{array}}\rightarrow -{a_{2}}^{2}+3a_{1}a_{3}\\\hline \end{array}}\end{aligned}}}

これらは、とても複雑ですが、代数方程式を用いて、三次方程式を次のように記載すると、

ax^{3}+bx^{2}+cx+d=0 

a,b,c,d は実数、 a\neq 0 の解 x は、

{\displaystyle x={\begin{cases}{\sqrt[{3}]{-{q \over 2}+{\sqrt {\left({q \over 2}\right)^{2}+\left({p \over 3}\right)^{3}}}}}+{\sqrt[{3}]{-{q \over 2}-{\sqrt {\left({q \over 2}\right)^{2}+\left({p \over 3}\right)^{3}}}}}-{b \over 3a}\\\omega {\sqrt[{3}]{-{q \over 2}+{\sqrt {\left({q \over 2}\right)^{2}+\left({p \over 3}\right)^{3}}}}}+\omega ^{2}{\sqrt[{3}]{-{q \over 2}-{\sqrt {\left({q \over 2}\right)^{2}+\left({p \over 3}\right)^{3}}}}}-{b \over 3a}\\\omega ^{2}{\sqrt[{3}]{-{q \over 2}+{\sqrt {\left({q \over 2}\right)^{2}+\left({p \over 3}\right)^{3}}}}}+\omega {\sqrt[{3}]{-{q \over 2}-{\sqrt {\left({q \over 2}\right)^{2}+\left({p \over 3}\right)^{3}}}}}-{b \over 3a}\end{cases}}}
{\displaystyle {\begin{cases}p=-{1 \over 3}\left({b \over a}\right)^{2}+{c \over a}\\q=2\left({b \over 3a}\right)^{3}-{bc \over 3a^{2}}+{d \over a}\\\omega ={-1+{\sqrt {3}}i \over 2}\end{cases}}}

となります。前2者に比べて少しはわかり易いですが、これではとてもではないものの覚えられません。 なお、この公式を導出するYouTubeサイトがあります。

ヨビノリ 3次方程式の解の公式(カルダノの公式)
https://www.youtube.com/watch?v=d_fyW_fTbTk

導出方法については、タメになると思います(^_-)-☆